Eigenfaces Versus Eigeneyes: First Steps Toward Performance Assessment of Representations for Face Recognition
نویسندگان
چکیده
The Principal Components Analysis (PCA) is one of the most successfull techniques that have been used to recognize faces in images. This technique consists of extracting the eigenvectors and eigenvalues of an image from a covariance matrix, which is constructed from an image database. These eigenvectors and eigenvalues are used for image classification, obtaining nice results as far as face recognition is concerned. However, the high computational cost is a major problem of this technique, mainly when real-time applications are involved. There are some evidences that the performance of a PCA-based system that uses only the region around the eyes as input is very close to a system that uses the whole face. In this case, it is possible to implement faster PCA-based face recognition systems, because only a small region of the image is considered. This paper reports some results that corroborate this thesis, which have been obtained within the context of an ongoing project for the development of a performance assessment framework for face recognition systems. The results of two PCA-based recognition experiments are reported: the first one considers a more complete face region (from the eyebrows to the chin), while the second is a sub-region of the first, containing only the eyes. The main contributions of the present paper are the description of the performance assessment framework (which is still under development), the results of the two experiments and a discussion of some possible reasons for them.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملA New Optimized Approach to Face Recognition Using EigenFaces
Eigenface approach is one of the simplest and most efficient methods for face recognition. In eigenface approach chosing the threshold, value is a very important factor for performance of face recognition. In addition, the dimensional reduction of face space depends upon number of eigenfaces taken. In this paper, an optimized solution for face recognition is given by taking the optimized value ...
متن کاملFace Recognition in Color Using Complex and Hypercomplex Representations
Color has plenty of discriminative information that can be used to improve the performance of face recognition algorithms, although it is difficult to use it because of its high variability. In this paper we investigate the use of the quaternion representation of a color image for face recognition. We also propose a new representation for color images based on complex numbers. These two color r...
متن کاملInformation maximization in face processing
This perspective paper explores principles of unsupervised learning and how they relate to face recognition. Dependency coding and information maximization appear to be central principles in neural coding early in the visual system. These principles may be relevant to how we think about higher visual processes such as face recognition as well. The paper first reviews examples of dependency lear...
متن کاملFace Recognition Using LBP Eigenfaces
In this paper, we propose a simple and efficient face representation feature that adopts the eigenfaces of Local Binary Pattern (LBP) space, referred to as the LBP eigenfaces, for robust face recognition. In the proposed method, LBP eigenfaces are generated by first mapping the original image space to the LBP space and then projecting the LBP space to the LBP eigenface subspace by Principal Com...
متن کامل